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Abstract
We first review a method for deriving linear and nonlinear transform pairs,
which is based on the spectral analysis of an eigenvalue equation and on the
formulation of a d-bar problem. Then, we present two applications of this
method: (a) we derive a certain linear transform pair in one dimension, which
appears in the characterization of the Dirichlet-to-Neumann map of the Laplace
equation in the interior of a convex two-dimensional curvilinear domain. (b) We
derive a nonlinear Fourier transform pair in four dimensions, which can be
used for the solution of the Cauchy problem of an integrable generalization
of the Kadomtsev–Petviashvilli equation in 4 + 2, i.e. in four spatial and two
temporal dimensions. The question of reducing this equation form 4+2 to 3+1
dimensions is also discussed.

PACS number: 02.30.Ik

(Some figures in this article are in colour only in the electronic version)

1. Introduction

There exists a distinctive class of nonlinear equations called integrable [1]. The modern
history of integrable equations begins with the celebrated works of Martin Kruskal and his
colleagues [2] on the Cauchy problem of the Korteweg–deVries equation using, what was later
called, the inverse scattering transform method. The next important step was taken by Peter
Lax who established in [3] that the crucial property of an integrable equation is its formulation
as the compatibility of two linear eigenvalue equations, which were later called a Lax pair.

The inverse scattering transform method for the solution of the Cauchy problem of
integrable evolution equations in 1 + 1, i.e. in one spatial and one temporal dimensions, can
be considered as a nonlinear Fourier transform method. The nonlinear analog of the relevant
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Fourier transform pair can be constructed by performing the spectral analysis of the time-
independent part of the Lax pair (see section 2) and by formulating a Riemann–Hilbert problem
[4].

There do exist integrable nonlinear evolution equations in 2 + 1, i.e. in two spatial and one
temporal dimensions. For instance, a 2 + 1 physically significant integrable generalization of
the Korteweg–deVries equation is the Kadomtsev–Petviashvilli equation. A formal method
for the solution of the Cauchy problem of equations in 2 + 1 was developed by Mark Ablowitz,
the author and their collaborators (this method was made rigorous in [5–7]). For equations
in 2 + 1, instead of a Riemann–Hilbert problem, one must now formulate either a nonlocal
Riemann–Hilbert problem [8] or a d-bar problem [9] (the latter problem was first introduced in
the field of integrability in the elegant analysis of Beals and Coifman [10] of certain problems
in 1 + 1, although for such problems a Riemann–Hilbert formalism is still adequate).

1.1. Inversion of integrals

The solution of the Cauchy problem of the Davey–Stewartson equation, which is a 2 + 1
physically significant integrable generalization of the celebrated nonlinear Schrödinger
equation, is based on the spectral analysis of the following eigenvalue equation [11–13]:

∂µ

∂x1
+ iσ3

∂µ

∂x2
− k[σ3, µ] = Qµ, k ∈ C, (x1, x2) ∈ R

2, (1.1)

where the eigenfunction µ(x1, x2, k, k̄) is a 2 × 2-matrix valued function, the bar denotes
complex conjugation and

σ3 = diag(1,−1), Q(x1, x2) =
⎛
⎝ 0 q(x1, x2)

q̄(x1, x2) 0

⎞
⎠ . (1.2)

The spectral analysis of equation (1.1) yields a nonlinear Fourier transform pair in two spatial
dimensions. Therefore, in the limit of small q, the formalism associated with (1.1) must
reduce to a formalism for deriving the usual two-dimensional Fourier transform. Indeed, it
was shown in [14] that if q is small then equation (1.1) reduces to the equation

∂µ

∂x1
+ i

∂µ

∂x2
− kµ = q, k ∈ C, (x1, x2) ∈ R

2 (1.3)

and that the spectral analysis of this equation provides a novel derivation of the two-dimensional
Fourier transform pair. This derivation can be considered as the construction of q(x1, x2) in
terms of its Fourier transform. Thus, the formalism introduced in [14] provides a novel method
for inventing a large class of integrals. The first significant application of this method was the
inversion by R Novikov [15] (see also [16]) of the so-called attenuated Radon transform. The
next novel application of this method was the inversion by B Pelloni and the author [17] of
the integral

f̂ (k) =
∫ T

0
e−ik2t−ikl(t)f (t) dt, k ∈ C, (1.4)

where l(t) is a smooth function and T is a finite positive constant. This integral characterizes
the Dirichlet-to-Neumann map for the linear version of the nonlinear Schrödinger equation,
formulated in the moving domain {l(t) < x < ∞, 0 < t < T } (the analogous problem for the
heat equation is solved in [18]).
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1.2. Integrability in 4 + 2

One of the most important open questions in the field of integrability has been the question
of the existence of integrable evolution equations in higher than two spatial dimensions.
Substantial progress in this question was reported recently in [19] and [20] where it was
shown respectively that (i) there exist integrable nonlinear evolution equations in any number
of dimensions. However, these equations have the disadvantage that they involve a nonlocal
commutator. (ii) There exist integrable nonlinear evolution equations in 4 + 2, i.e. in four
spatial and two temporal dimensions. In particular 4 + 2 generalizations of the Kadomtsev–
Petviashvilli and of the Davey–Stewartson equations were presented in [20]. Furthermore, the
solution of the Cauchy problem of the latter equation was also presented in [20]. The question
of reducing these equations from 4 + 2 to 3 + 1 dimensions was discussed in [21] and [22].

In the present paper (a) the steps needed for the spectral analysis of a given eigenvalue
equation are reviewed in section 2 and illustrated with the aid of the eigenvalue equation
associated with the Radon transform pair. (b) The spectral analysis of a certain eigenvalue
equation in four dimensions is used in proposition 3.1 for the derivation of a certain nonlinear
Fourier transform pair in four dimensions. This pair is then used for the solution of the Cauchy
problem of a generalization of the Kadomtsev–Petviashvilli equation in 4 + 2. (c) The spectral
analysis of a certain eigenvalue equation in one dimension is used in proposition 4.1 for the
inversion of the integral

f̂ (k) =
∫ X

0
e−ikx−kl(x)f (x) dx, k ∈ C,

where X is a positive constant, l(x) is a given smooth function and f (x) is an arbitrary
function with appropriate smoothness. The above integral appears in the characterization
of the Dirichlet-to-Neumann map of the Laplace equation in a domain involving the curve
y = l(x). The above results are further discussed in section 5.

2. The spectral analysis of an eigenvalue equation

In this section, starting from a given eigenvalue equation we review the main ideas and
techniques needed for the construction of the associated transform pair {f, f̂ }. The relevant
analysis, which will be referred to as the spectral analysis, involves two main steps: (i) solve
the given eigenvalue equation in terms of f . If k denotes the eigenvalue parameter, this
involves constructing a solution µ of the given eigenvalue equation which is bounded for all
complex values of k. This problem will be referred to as the direct problem. (ii) Using the
fact that µ is bounded for all complex k, construct an alternative representation of µ which
(instead of depending on f ) depends on some ‘spectral function’ of f denoted by f̂ . This
problem will be referred to as the inverse problem.

It turns out that the inverse problem gives rise to either a Riemann–Hilbert or a d-bar
problem. Indeed, for certain eigenvalue problems the function µ is sectionally analytic in k,
i.e. it has different representations in different domains of the complex k-plane and each of
these representations is analytic. In this case, if the ‘jumps’ of these representations across the
different domains can be expressed in terms of f̂ , then it is possible to reconstruct µ as the
solution of a Riemann–Hilbert problem which is uniquely defined in terms of f̂ . However, for
a large class of eigenvalue problems, there exists a domain in the complex k-plane where µ is
not analytic. In this case, if ∂µ/∂k̄ can be expressed in terms of f̂ , then µ can be reconstructed
through the solution of a d-bar problem which is uniquely defined in terms of f̂ .

We recall that the classical derivation of transform pairs involves the integration in the
complex k-plane of an appropriate Green’s function. However, this derivation is based on

3
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the assumption that the Green’s function is an analytic function of k and it also assumes
completeness. The assumption of analyticity corresponds to the case that µ is sectionally
analytic. Therefore, the approach reviewed here has the advantage that, not only it provides a
simpler approach to deriving classical transforms avoiding the problem of completeness, but
also it can be applied to problems that the associated Green function is not an analytic function
of k.

Example (The Radon transform). The Radon transform can be derived through the spectral
analysis of the following eigenvalue equation for the scalar function µ(x1, x2, k):

1

2

(
k +

1

k

)
∂µ

∂x1
+

1

2i

(
k − 1

k

)
∂µ

∂x2
= f (x1, x2), k ∈ C, (x1, x2) ∈ R

2, (2.1)

where f is an arbitrary function with appropriate smoothness and decay.
The solution of the direct problem involves constructing a function µ which is bounded

for all complex values of k. It is shown in [16] (see also [23]) that such a solution is given by

µ(x1, x2, k) = 1

2π i
sgn

(
1

|k|2 − |k|2
)∫∫

R
2
f (x ′

1, x
′
2)

dx ′
1dx ′

2

z′ − z
, |k| �= 1,

(x1, x2) ∈ R
2, (2.2)

where z is defined by

z = 1

2i

(
k − 1

k

)
x1 − 1

2

(
k +

1

k

)
x2. (2.3)

The function µ defined by equation (2.2) is a sectionally analytic function of k for all k
including k = ∞, since

µ = O

(
1

k

)
, k → ∞. (2.4)

The solution of the inverse problem involves constructing a representation for µ in terms of
some spectral function f̂ . In this respect we note that the function µ defined by equation (2.2)
has a ‘jump’ across the unit circle of the complex k-plane. Let µ+ and µ− denote the limits of
µ as k approaches the unit circle from inside and outside the unit disc respectively, i.e.

µ±(x1, x2, θ) � lim
ε→0,ε>0

µ(x1, x2, (1 ∓ ε) eiθ ), θ ∈ [0, 2π), (x1, x2) ∈ R
2. (2.5)

The limits µ± can be computed by analyzing equation (2.2). For this computation it is
convenient to introduce the local coordinates, see figure 1,

x1 = τ cos θ − ρ sin θ, x2 = τ sin θ + ρ cos θ, (τ, ρ) ∈ R
2. (2.6)

Using these coordinates, it is shown in [16] that the ‘jump’ of µ across the unit circle is given
by

µ+(x1, x2, θ) − µ−(x1, x2, θ) = (H f̂ )(ρ, θ), ρ ∈ R, θ ∈ [0, 2π), (2.7)

where ρ can be expressed in terms of (x1, x2, θ) by the inverse of equations (2.6), i.e. by the
equation

ρ = −x1 sin θ + x2 cos θ, (2.8)

H denotes the Hilbert transform in the variable ρ and f̂ (ρ, θ) denotes the Radon transform of
f , namely

f̂ (ρ, θ) =
∫ ∞

−∞
f (τ cos θ − ρ sin θ, τ sin θ + ρ cos θ) dτ, ρ ∈ R, θ ∈ [0, 2π).

(2.9)

4
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τ

ρ

θ

(x  , x  ) 1 2

Figure 1. Local coordinates for the Radon transform.

Equations (2.4) and (2.7) define a Riemann–Hilbert problem for the sectionally analytic
function µ. The unique solution of this problem for all (x1, x2) ∈ R

2 is given by

µ(x1, x2, k) = 1

2iπ

∫
|k′|=1

(µ+ − µ−)
dk′

k′ − k
, k ∈ C, |k| �= 1.

Hence,

µ(x1, x2, k) = 1

2iπ2

∫ 2π

0

eiθ

eiθ − k
(H f̂ )(ρ, θ) dθ, k ∈ C, |k| �= 1, (2.10)

where ρ is expressed in terms of (x1, x2, θ) by equation (2.8).
Equations (2.2) and (2.10) express µ in terms of f and f̂ respectively. Using these

two different representations for µ it is elementary to express f in terms of f̂ : replacing in
equation (2.1) µ by the rhs of equation (2.10) we find the inverse Radon transform,

f (x1, x2) = 1

4π
(∂x1 − i∂x2)

∫ 2π

0
eiθF (−x1 sin θ + x2 cos θ, θ) dθ, (2.11a)

where

F(ρ, θ) = 1

iπ
−
∫ ∞

−∞

f̂ (ρ ′, θ)

ρ ′ − ρ
dρ ′ (2.11b)

and −
∫

denotes the principal value integral.
Equations (2.9) and (2.11) constitute the Radon transform pair.

Remark 2.1. It is shown in [16] that a slight variation of the above analysis yields the inversion
of the attenuated Radon transform. The Radon transform provides the mathematical foundation
of computerized tomography as well as of positron emission tomography, whereas the
attenuated Radon transform provides the mathematical foundation of single photon emission
computerized tomography (SPECT) [24]. The latter technique has important applications
in many areas of medicine including oncology, cardiology and neurology. The numerical
implementation of the inverse attenuated Radon transform using either cubic splines or
Chebysev approximations is presented in [16] and [25]. A typical numerical implementation
using a technique based on the fast Fourier transform is shown in the image (c) of figure 2.
Figures 2(b)–(d) depict the numerical reconstructions of the realistic cardiac phantom depicted
in figure 2(a), using three different techniques. The reconstruction (b) uses the approximation
of zero attenuation which reduces the attenuated Radon transform to the classical Radon
transform; the reconstruction of the later transform uses a technique based on the fast Fourier
transform, which is called filter back projection (this is actually what is used now for SPECT

5



J. Phys. A: Math. Theor. 41 (2008) 344006 A S Fokas

(a) (b)

(c) (d )

Figure 2. Different reconstructions of a cardiac phantom.

in most of the hospitals). The reconstruction in (d) uses an improved mathematical model for
SPECT (which takes into account the fact that the collimator actually receives ‘cones’ instead
of rays); this leads to a modified attenuated Radon transform which can also be inverted
analytically [26]. The incorporation of noise to these analytical algorithms is a difficult
problem which is under consideration.

3. A nonlinear Fourier transform pair in four dimensions

We first introduce some useful notations.

• S(R4) will denote the space of Schwartz functions in four dimensions.
• x, y, k denote the following complex variables:

x = x1 + ix2, y = y1 + iy2, k = k1 + ik2, (x1, x2, y1, y2, k1, k2) ∈ R
6. (3.1)

• f (x, y, k) denotes f (x1, x2, y1, y2, k1, k2)

• If χ is the complex variable χ = χ1 + iχ2, (χ1, χ2) ∈ R
2, then dχ = dχ1dχ2.

Proposition 3.1. Assume that the complex-valued function f (x1, x2, y1, y2) ∈ S(R4) satisfies
appropriate ‘small norm’ conditions such that the following linear integral equation has a
unique solution in the Banach space of bounded continuous complex-valued functions in R

6:

µ(x, y, k) = 1 +
∫

R
4
G(x − x ′, y − y ′, k)f (x ′, y ′)µ(x ′, y ′, k) dx ′ dy ′, (3.2)

where the function G is defined by

G(x, y, k) = − 1

π4

∫
R

4

eξx−ξ̄ x̄+ηy−η̄ȳ

−η̄ − ξ̄ 2 + 2kξ̄
dξ dη, ξ = ξ1 + iξ2, η = η1 + iη2,

(x1, x2, k1, k2, ξ1, ξ2, η1, η2) ∈ R
8. (3.3)

6
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Then, the following nonlinear Fourier transform of f is well defined

R
4 → R

4 : f (x1, x2, y1, y2) → f̂ (k1, k2, λ1, λ2)

f̂ (k, λ) = 2

π3

∫
R

4
(λ̄ − k̄)Ē(k, λ, x, y)f (x, y)µ(x, y, λ dx dy,

(3.4)

where µ is uniquely defined in terms of f by equation (3.2) and E denotes the exponential

E(k, λ, x, y) = e2i[(λ2−k2)x1+(k1−λ1)x2+2(λ1λ2−k1k2)y1+(k2
1−k2

2 +λ2
2−λ2

1)y2]. (3.5)

Assume that the complex-valued function f̂ (k, λ) ∈ S(R4) satisfies appropriate ‘small
norm’ conditions such that the following linear integral equation has a unique solution in the
Banach space of bounded continuous complex-valued functions in R

6,

µ(x, y, k) = 1 +
1

π

∫
R

4
E(k′, λ, x, y)f̂ (k′, λ)µ(x, y, λ)

dk′ dλ

k − k′ , k ∈ C. (3.6)

Then, the inverse nonlinear Fourier transform associated with equation (3.4),

R
4 → R

4 : f̂ (k1, k2, λ1, λ2) → f (x1, x2, y1, y2)

is given by the equation

f (x, y) = 2

π
∂x̄

∫
R

4
E(k, λ, x, y)f̂ (k, λ)µ(x, y, λ) dk dλ, (3.7)

where µ is uniquely defined in terms of f̂ by equation (3.6).

Proof. We will derive the above nonlinear transform pair by performing the spectral analysis
of the eigenvalue equation

µȳ − µx̄x̄ − 2kµx̄ + f µ = 0, (3.8)

where the complex variables (x, y, k) are defined in (3.1) and f (x, y) ∈ S(R4).
In order to solve the direct problem we look for a solution of equation (3.8) such that

µ → 1 as |x|2 + |y|2 → ∞. (3.9)

A solution of equation (3.8) satisfying equation (3.9) is given by equation (3.2). Indeed,

µ(x, y, k) = 1 +
∫

G(x − x ′, y − y ′, k)f (x ′, y ′)µ(x ′, y ′, k) dx ′ dy ′, (3.10)

where the Green’s function G(x, y, k) satisfies

Gȳ − Gx̄x̄ − 2kGx̄ = −δ(x)δ(y). (3.11)

Using the formula

δ(x1) = 1

π

∫
R

e2iξ1x1 dξ1, x1 ∈ R,

it follows that

δ(x)δ(y) = 1

π4

∫
R

4
e2i(ξ1x2+ξ2x1+η1y2+η2y1) dξ dη = 1

π4

∫
R

4
eξx−ξ̄ x̄+ηy−η̄ȳ dξ dη (3.12)

and then equation (3.11) implies equation (3.3).
If the linear integral equation (3.2) has a unique solution then µ is bounded for all k ∈ C.
In order to solve the inverse problem we must express ∂µ/∂k̄ in terms of f̂ . In this respect

we note that the function ∂µ/∂k̄ satisfies the following linear integral equation:
∂µ

∂k̄
(x, y, k) =

∫
R

2
E(k, λ, x, y)f̂ (k, λ) dλ +

∫
R

4
G(x − x ′, y − y ′, k)f (x ′, y ′)

∂µ

∂k̄
(x ′, y ′, k).

(3.13)

7
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Indeed, computing the d-kbar derivative of equation (3.2) we find an equation similar to
equation (3.2) but with the first term of the rhs of equation (3.2) replaced by∫

R
4

∂G

∂k̄
(x − x ′, y − y ′, k)f (x ′, y ′)µ(x ′, y ′, k) dx ′ dy ′. (3.14)

We will now show that this term equals the first term of the rhs of equation (3.13). Using the
identity

−η̄ − ξ̄ 2 + 2kξ̄ = [
2(k1ξ1 + k2ξ2) − η1 − ξ 2

1 + ξ 2
2

]
+ i[η2 + 2ξ1ξ2 + 2(k2ξ1 − k1ξ2)],

(3.15)

it follows (see appendix A) that
∂G

∂k̄
= − 2

π3

∫
R

2
e2i(ξ1x2+ξ2x2+η1y2+η2y1)ξ dξ1 dξ2

∣∣∣∣η1=2(k1ξ1+k2ξ2)−ξ2
1 +ξ2

2
η2=2(k1ξ2−k2ξ1)−2ξ1ξ2

= − 2

π3

∫
R

2
exp

{
2i[ξ1x2 + ξ2x1 + 2(k1ξ1 + k2ξ2)y2 +

(
ξ 2

2 − ξ 2
1

)
y2

+ 2(k1ξ2 − k2ξ1)y1 − 2ξ1ξ2y1]
}
ξ dξ1 dξ2.

The change of variables

ξ1 = −λ1 + k1, ξ2 = λ2 − k2

implies
∂G

∂k̄
= 2

π3

∫
R

2
(λ̄ − k̄)E(k, λ, x, y) dλ,

hence, the expression in (3.15) becomes the first term of the rhs of equation (3.13).
Multiplying equation (3.2) with k replaced by λ by E(k, λ, x, y)f̂ (k, λ), integrating over

dλ and comparing the resulting equation with equation (3.13) we find
∂µ

∂k̄
=

∫
R

2
E(k, λ, x, y)f̂ (k, λ)µ(x, y, λ) dλ, (3.16)

provided that G satisfies the symmetry relation

G(x, y, λ)E(k, λ, x, y) = G(x, y, k).

This identity can be verified by replacing in equation (3.3) the variables (ξ1, ξ2, η1, η2) with(
ξ1 + k1 − λ1, ξ2 + λ2 − k2, η1 + k2

1 − k2
2 + λ2

2 − λ2
1, η2 + 2(λ1λ2 − k1k2)

)
.

Integrating equation (3.16) and using the estimate that

µ → 1 as k → ∞,

we find equation (3.6).
Equations (3.2) and (3.6) express µ in terms of f and f̂ respectively. The easiest way to

obtain a relation between f and f̂ is to note that as k → ∞ equations (3.6) and (3.8) imply
respectively

µ ∼ 1 +
1

πk

∫
R

4
E(k, λ, x, y)f̂ (k, λ)µ(x, y, λ) dk dλ + O

(
1

k2

)
,

µ ∼ 1 +
1

2k
∂−1
x̄ f + O

(
1

k2

)
.

The O
(

1
k

)
terms of the above equations yield equations (3.7). �

Remark 3.1. In the linear limit of small f , equations (3.4) and (3.7) can be obtained from the
usual Fourier transform pair after a change of variables, see appendix B.

Remark 3.2. Using the definition (3.4) it is possible to express the small norm condition for
f̂ in terms of appropriate small norm conditions for f .

8
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3.1. A generalization of the Kadomtsev–Petviashvilli equation in 4 + 2

Suppose that f̂ (k, λ) is allowed to depend on the complex variable t,

t = t1 + it2, (t1, t2) ∈ R
2; (3.17)

let q̂(k, λ, t) denote this function. Then f (x, y) will also depend on t and we denote this
function by q(x, y, t). Using the so-called dressing method [27] it can be shown that if

q̂(k, λ, t) = f̂ (k, λ) e(λ3−k3)t̄−(λ̄3−k̄3)t , (3.18)

then µ(x, y, t, k) in addition to the equation

µȳ − µx̄x̄ − 2kµx̄ + qµ = 0, (3.19)

also satisfies the following eigenvalue equation:

µt̄ − µx̄x̄x̄ − 3k2µx̄ − 3kµx̄x̄ + 3
2qµx̄ + 3

2kqµ + 3
4qx̄µ + 3

4

(
∂−1
x̄ qȳ

)
µ = 0, (3.20)

where ∂−1
x̄ is defined by

(
∂−1
x̄ f

)
(x) = 1

π

∫∫
R

2
f (x ′)

dx ′

x − x ′ , (x1, x2) ∈ R
2. (3.21)

Equations (3.20) and (3.21) provide a Lax pair for the following 4 + 2 generalization of the
Kadomtsev–Petviashvilli equation

qt̄ = 1
4qx̄x̄x̄ − 3

2qqx̄ + 3
4∂−1

x̄ qȳȳ . (3.22)

Using the nonlinear transform pair of proposition 3.1 it is straightforward to solve the
Cauchy problem of equation (3.22), i.e. equation (3.22) supplemented with the initial condition

q(x1, x2, y1, y2, 0, 0) = f (x1, x2, y1, y2). (3.23)

Indeed, suppose that the function f ∈ S(R4) satisfies appropriate small norm conditions such
that equations (3.2) and (3.6) have unique solutions (see remark 3.2). Define f̂ in terms
of f by equation (3.4) and then define q̂ by equation (3.18). Finally, define q(x, y, t) by
equations (3.6) and (3.7) where f̂ in these equations is replaced with q̂. Then the function q
satisfies equations (3.22) and (3.23).

4. A novel transform pair and the Laplace equation

Proposition 4.1. Define f̂ (k) in terms of f (x) by

f̂ (k) =
∫ X

0
e−ikx−kl(x)f (x) dx, k ∈ C, (4.1)

where f (x) is an arbitrary complex-valued function with appropriate smoothness, X is a
positive constant and l(x) is a smooth function satisfying

l′′(x) > 0, x ∈ [0, X]; l(0) = 0. (4.2)

Then f (x) can be expressed in terms of f̂ (k) through the solution of the following linear
Fredholm integral equation:

f (x) = 1 − il′(x)

2π

{∫
L(x)

eikx+kl(x)f̂ (k) dk +
∫ X

0

f (s)

l(x) − l(s) + i(x − s)
ds

}
, 0 < x < X,

(4.3)

where the ray L(x) depicted in figure 3, is defined by

L(x) = {k1 � 0, k2 = k1l
′(x), x ∈ (0, X)}. (4.4)

9
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D1

D3

l (X)

l (0)

L(x)

D2

Figure 3. The domains Dj , j = 1, 2, 3.

Proof. We will derive the above linear transform pair by performing the spectral analysis of
the eigenvalue equation
∂µ

∂x
(x, k) − ik(1 − il′(x))µ(x, k) = f (x), k = k1 + ik2, x ∈ (0, X),

(k1, k2) ∈ R
2. (4.5)

In order to solve the direct problem we define the following x-dependent domains in the
complex k-plane, see figure 3:

D1(x) = {k1 > 0, k2 > l′(x)} ∪ {k1 < 0, k2 > l′(0)k1}, (4.6a)

D2(x) = {k1 > 0, k2 < l′(x)k1} ∪ {k1 < 0, k2 < l′(X)k1}, (4.6b)

D3(x) = C\{D1(x) ∪ D2(x)}. (4.6c)

A solution µ(x, k) of equation (4.5) bounded for all complex values of k is given by

µ(x, k) = µj(x, k), k ∈ Dj(x), 0 < x < X, j = 1, 2, 3, (4.7)

where

µj(x, k) =
∫ x

xj

eik(x−ξ)+k[l(x)−l(ξ)]f (ξ) dξ, j = 1, 2, 3, (4.8)

x1 = 0, x2 = X, x3 = S

(
k2

k1

)
(4.9)

and the function S(k) is the inverse of the function l′(x):

k = l′(x) ←→ x = S(k), k ∈ D3, x ∈ (0, X). (4.10)

Indeed, the functions µ1 and µ2 are entire functions of k, which are bounded as k → ∞ in
the domains D1 and D2 respectively. These domains are determined by the real part of the
exponential appearing in equation (4.8), which equals

exp{−(x − ξ)[k2 − k1l
′(τ )]}, τ ∈ (x, ξ).

10
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For µ1, x−ξ � 0, thus the above exponential is bounded as k → ∞ provided that k2 � k1l
′(τ ),

hence

k1 � 0,
k2

k1
� l′(τ ); k1 � 0,

k2

k1
� l′(τ ).

Taking into consideration that l′(τ ) is an increasing function, the inequalities involving l′(τ )

are satisfied provided that

k1 � 0,
k2

k1
� l′(x); k1 � 0,

k2

k1
� l′(0). (4.11a)

Similarly for µ2, x − ξ � 0, thus boundness requires

k1 � 0,
k2

k1
� l′(τ ); k1 � 0,

k2

k1
� l′(τ ),

which yields

k1 � 0,
k2

k1
� l′(x), k1 � 0,

k2

k1
� l′(X). (4.11b)

Equations (4.11a) and (4.11b) imply the definitions (4.6a) and (4.6b).
The domains D1 ∪ D2 do not cover the entire complex k-plane, thus it is necessary to

introduce the function µ3. It is straightforward to show that µ3 is bounded in D3 but since S
depends on k2/k1, µ3 is not an analytic function.

The definitions of µj imply that µ3 coincides with the functions µ1 and µ2 on the rays
{k1 < 0, k2 = l′(0)k1} and {k1 < 0, k2 = l′(X)k1} respectively. Furthermore, µj = 0(1/k) as
k → ∞. Hence the Pompieu (or d-bar, or Cauchy–Green) formula [28] implies

µ(x, k) = 1

2iπ

∫
L(x)

(µ1 − µ2)(x, λ)
dλ

λ − k
+

1

π

∫∫
D3

∂µ3

∂λ̄
(x, λ)

dλ1 dλ2

kλ
,

λ = λ1 + iλ2, (λ1, λ2) ∈ R
2, k ∈ C\L(x). (4.12)

The definitions of {µj }3
1 imply

µ1(x, k) − µ2(x, k) = eikx+kl(x)f̂ (k), (4.13a)

∂µ3

∂k̄
= ik̄

2k2
1

1

l′′(S)
eik(x−S)+k[l(x)−l(S)]q(S), (4.13b)

where we have used the formula
∂

∂k̄
= 1

2

(
∂

∂k1
+ i

∂

∂k2

)
.

Equations (4.7), where {µj }3
1 are defined by equations (4.8) and (4.9), provide the solution of

the direct problem. Equation (4.12), where µ1 −µ2 and ∂µ3/∂k̄ are given by equations (4.13),
provides the solution of the inverse problem. Substituting equation (4.12) into equation (4.5)
we find

f (x) = 1 − il′(x)

2π

{∫
L(x)

eikx+kl(x)f̂ (k) dk −
∫∫

D

k̄ eik(x−S)+k[l(x)−l(S)]q(S)

k2
1 l

′′(S)
dk1 dk2

}
.

(4.14)

The second term of the rhs of equation (4.14) can be transformed to the second term of the rhs
of equation (4.3) by using the transformations

k2

k1
= λ, k2 = ν, (λ, ν) ∈ R

2

11
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and

S(λ) = s ↔ λ = l′(s), (s, λ) ∈ R
2.

These transformations imply

k = (1 + iλ)ν, dk1 dk2 = νdν dλ; dλ = l′′(s) ds.

Under these transformations the second term of the rhs of equation (4.14) yields∫ 0

−∞
dν

∫ l′(0)

l′(X)

dλ
(1 + iλ)

l′′(S)
e[i(x−S)+l(x)−l(S)]ν(1+iλ)q(S) =

∫ 0

X

[1 + il′(s)]K(x, s)q(s) ds, (4.15)

where

K(x, s) =
∫ 0

−∞
exp{ν[1 + il′(s)][i(x − s) + l(x) − l(s)]} dν.

The real part of the product of the two brackets appearing in the above exponential is positive,
thus K is well defined. Computing K explicitly, we find that the rhs of equation (4.15) yields
the rhs of equation (4.3). �

Remark 4.1. The representation (4.12) was first derived in [29]. However, it was not realized
in [29] that the double integral appearing in equation (4.12) can be expressed as a Fredholm
integral term. The approach followed here was developed in [17].

Remark 4.2. The integral defined in (4.1) appears in the characterization of the Dirichlet-to-
Neumann map of the Laplace equation in the interval of a domain which involves the curve
l(x). Indeed, the Laplace equation can be written in the form

∂

∂z̄
qz = 0, z = x + iy, (x, y) ∈ R

2,

which implies that qz is an analytic function. Hence, if q satisfies the Laplace equaiton in a
piecewise smooth domain � ⊂ R

2 then∫
∂�

e−ikzqzdz = 0, k = k1 + ik2, (k1, k2) ∈ R
2,

where ∂� denotes the boundary of �. If part of ∂� is given by {0 < x < X, y = l(x)}, then
this part of the boundary yields the following term:

1

2

∫ X

0
e−ikx+kl(x)[qx(x, l(x)) − iqy(x, l(x))](1 + il′(x)) dx.

For the Dirichlet problem q is given, thus

q(x, l(x)) = d(x), 0 < x < X,

where d(x) is a given complex-valued function. Thus,

qx(x, l(x)) − iqy(x, l(x)) = [1 + il′(x)]d ′(x) − i[1 + l′(x)2]qy(x, l(x)).

Hence the above integral becomes∫ X

0
e−ikx+kl(x)f (x) dx + f̂ (k),

where f (x) is an unknown function, whereas f̂ (k) is known:

f (x) = −i[1 + l′2(x)]qy(x, l(x)), f̂ (k) =
∫ X

0
e−ikx+kl(x)[1 + il′(x)]d ′(x).

12
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5. Conclusions

The spectral analysis of a given eigenvalue equation and the formulation of a d-bar problem
provides a powerful tool for the construction of linear and nonlinear transform pairs. Regarding
equation (3.8) we note that although µ depends on four spatial variables, (x1, x2, y1, y2), µ only
depends on two spectral variables, (k1, k2). It is interesting that the additional two variables
(λ1, λ2) needed for the formulation of the nonlinear Fourier transform are generated by the
nonlocal d-bar problem. This mechanism is similar to that in the Kadomtsev–Petviashvilli I
equation, where the corresponding µ depends on two spatial variables but only one spectral
variable k1; in that case, the second spectral variable k2 is generated by the nonlocal Riemann–
Hilbert problem.

It is possible to reduce equation (3.23) from 4 + 2 to 3 + 1 dimensions, but this reduction
is implicit: the spectral function q̂ is independent of t1 provided that

Im(λ3 − k3) = 0, or k3
2 − λ3

2 + 3λ2
1λ2 − 3k2

1k2 = 0. (5.1)

This constraint in the Fourier space implies a constraint in the physical space and hence the
constraint (5.1) reduces equation (3.22) to an equation in 3 + 1. For small q, this reduction is
explicit, however the question of writing the relevant constraint in the physical space explicitly
when q is not small, remains open.

An alternative reduction, which is more convenient for the potential version of
equation (3.22), involves ∂y2 = −∂−1

x1
∂x2∂y1 , as well as(

∂2
x1

+ ∂2
x2

)
q = 0. (5.2)

In this case q satisfies [21]

qt1 = 1
4qx1x1x1 − 3

8

(
q2

x1
− q2

x2

)
+ 3

4∂−1
x1

qy1y1 . (5.3)

It can be shown that the evolution defined by equation (5.3) preserves the Laplace
equation (5.2). Thus, equation (5.3) is an integrable nonlinear evolution equation in 3 + 1,
namely x1, x2, y1 and t1, provided that q(x1, x2, y, 0) is harmonic in x1 and x2.
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Appendix A.

In what follows we will show that if G is defined by

G(x, y, k) = − 1

π4

∫
R

4

eξx−ξ̄ x̄+ηy−η̄ȳ

−η̄ − ξ̄ 2 + 2kξ̄
dξ dη,

then

∂G

∂k̄
(x, y, k) = − 2

π3

∫
R

2
eξx−ξ̄ x̄+ηy−η̄ȳ ξ dξ

∣∣∣∣ η1=2(k1ξ1+k2ξ2)−ξ2
1 +ξ2

2
η2=2(k1ξ2−k2ξ1)−2ξ1ξ2

. (A.1)

Indeed,

∂G

∂k̄
= − 1

π4

∫
R

4

eξx−ξ̄ x̄+ηy−η̄ȳ

2ξ̄

∂

∂k̄

⎛
⎝ 1

−η̄−ξ̄ 2

2ξ̄
+ k

⎞
⎠ dξ dη.

13
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But

η̄ + ξ̄ 2

2ξ̄
= 1

2|ξ |2 (η1ξ1 + η2ξ2) + ξ1/2 + i

(
1

2|ξ |2 (η1ξ2 − η2ξ1) − ξ2/2

)
.

Hence

∂

∂k̄

⎛
⎝ 1

−η̄−ξ̄ 2

2ξ̄
+ k

⎞
⎠ = πδ

(
k1 − Re

(
η̄ + ξ̄ 2

2ξ̄

))
δ

(
k2 − Im

(
η̄ + ξ̄ 2

2ξ̄

))

= πδ

(
k1 − 1

2|ξ |2 (η1ξ1 + η2ξ2) − ξ1/2

)
δ

(
k2 − 1

2|ξ |2 (η1ξ2 − η2ξ1) + ξ2/2

)
.

We can use the first delta function to compute the integral with respect to dη2 (note that η2 is
multiplied by ξ2

2|ξ |2 in the delta function). Thus

∂G

∂k̄
= − 1

π4

∫
R

3

eξx−ξ̄ x̄+ηy−η̄ȳ

2ξ̄
π

∣∣∣∣2|ξ |2
ξ2

∣∣∣∣
× δ

(
k2 − 1

2|ξ |2 (η1ξ2 − η2ξ1) + ξ2/2

)∣∣∣∣
η2= 1

ξ2
((k1−ξ1/2)2|ξ |2−η1ξ1)

dξ dη1.

Computing the integral with respect to dη1 (note that η1 is multiplied by 1
2|ξ |2 (ξ

2
1 /ξ2 + ξ2) =

1/(2ξ2) in the delta function), we find

− 1

π4

∫
R

2

eξx−ξ̄ x̄+ηy−η̄ȳ

2ξ̄
π

∣∣∣∣2|ξ |2
ξ2

∣∣∣∣ |2ξ2| dξ

∣∣∣∣ η1=2(k1ξ1+k2ξ2)−ξ2
1 +ξ2

2
η2=2(k1ξ2−k2ξ1)−2ξ1ξ2

,

which simplifies to equation (A.1).

Appendix B. (The linear limit of the Fourier transform pair)

In the linear limit f → εf + O(ε2), we find µ = 1 + O(ε) so that to first order the Fourier
transform pair (3.4) and (3.7) becomes

f̂ (k, λ) = 2

π3

∫
R

4
(λ̄ − k̄)Ē(k, λ, x, y)f (x, y) dx dy, (B.1)

f (x, y) = 2

π
∂x̄

∫
R

4
E(k, λ, x, y)f̂ (k, λ) dk dλ. (B.2)

Using

∂x̄E(k, λ, x, y) = 1
2 (∂x1 + i∂x2)E(k, λ, x, y) = (λ − k)E(k, λ, x, y),

equation (B.2) becomes

f (x, y) = 2

π

∫
R

4
(λ − k)E(k, λ, x, y)f̂ (k, λ) dk dλ. (B.3)

We will show that equations (B.1) and (B.3) can be obtained from the usual Fourier transform
pair after a change of variables. Indeed, the Fourier transform is defined by

ϕ̂(p) =
∫

dnx e−ip·xf (x),

ϕ(x) = 1

(2π)n

∫
dnp eip·xf̂ (p),

14
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where x and p are n-dimensional vectors. Letting

p = (
2(λ2 − k2), 2(k1 − λ1), 4(λ1λ2 − k1k2), 2

(
k2

1 − k2
1 + λ2

2 − λ2
1

))
and

x = (x1, x2, y1, y2),

we find

E(k, λ, x, y) = eip·x.

Furthermore, letting ϕ(x) = f (x, y), equation (B.1) yields

f̂ (k, λ) = 2

π3

∫
R

4
(λ̄ − k̄)Ē(k, λ, x, y)f (x, y) dx dy

= 2

π3
(λ̄ − k̄)

∫
R

4
e−ip·xϕ(x) d4x = 2

π3
(λ̄ − k̄)ϕ̂(p). (B.4)

We must now show that f (x, y) is given by (B.3). Using (B.4) on the right-hand side of
equation (B.3) we find

2

π

∫
R

4
(λ − k)E(k, λ, x, y)f̂ (k, λ) dk dλ = 2

π

∫
R

4
(λ − k) eip·x 2

π3
(λ̄ − k̄)ϕ̂(p) dk dλ. (B.5)

In order to change variables from dkdλ to d4x we compute the determinant

det

(
dx

dk dλ

)
= det

⎛
⎜⎜⎝

0 −2 0 2
2 0 −2 0

−4k2 −4k1 4λ2 4λ1

4k1 −4k2 −4λ1 4λ2

⎞
⎟⎟⎠ = 64|λ − k|2.

Therefore the integral on the right-hand side of (B.5) becomes

2

π

∫
R

4
(λ − k) eip·x 2

π3
(λ̄ − k̄)ϕ̂(p)

1

64|λ − k|2 d4x

= 1

16π4

∫
R

4
eip·xϕ̂(p) d4x = ϕ(x) = f (x, y).
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